Interlayer excitonic superfluidity in graphene

نویسندگان

  • D. S. L. Abergel
  • M. Rodriguez-Vega
  • Enrico Rossi
  • S. Das Sarma
چکیده

We discuss the conditions under which the predicted (but not yet observed) zero-field inter-layer excitonic condensation in double layer graphene has a critical temperature high enough to allow detection. Crucially, disorder arising from charged impurities and corrugation in the lattice structure—invariably present in all real samples—affects the formation of the condensate via the induced charge inhomogeneity. In the former case, we use a numerical Thomas-Fermi-Dirac theory to describe the local fluctuations in the electronic density in double layer graphene devices and estimate the effect these realistic fluctuations have on the formation of the condensate. To make this estimate, we calculate the critical temperature for the interlayer excitonic superfluid transition within the mean-field BCS theory for both optimistic (unscreened) and conservative (statically screened) approximations for the screening of the interlayer Coulomb interaction. We also estimate the effect of allowing dynamic contributions to the interlayer screening. We then conduct similar calculations for double quadratic bilayer graphene, showing that the quadratic nature of the low-energy bands produces pairing with critical temperature of the same order of magnitude as the linear bands of double monolayer graphene.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bose-Einstein condensation of quasiparticles in graphene.

The collective properties of different quasiparticles in various graphene-based structures in a high magnetic field have been studied. We predict Bose-Einstein condensation (BEC) and the superfluidity of 2D spatially indirect magnetoexcitons in a two-layer graphene. The superfluid density and the temperature of the Kosterlitz-Thouless phase transition are shown to be increasing functions of the...

متن کامل

Finite-temperature pseudospin torque effect in graphene bilayers

We use self-consistent quantum transport theory to investigate the influence of layer Fermi energy and temperature on the interlayer transport properties of bilayer graphene in the regime of excitonic superfluidity. We conclude that at low temperature the critical tunneling currents and quasiparticle penetration depths are well explained by the existing zero-temperature pseudospin torque model....

متن کامل

Bose-Einstein condensation and superfluidity of trapped polaritons in graphene and quantum wells embedded in a microcavity.

The theory for spontaneous coherence of short-lived quasiparticles in two-dimensional excitonic systems is reviewed, in particular, quantum wells (QWs) and graphene layers (GLs) embedded in microcavities. Experiments with polaritons in an optical microcavity have already shown evidence of Bose-Einstein condensation (BEC) in the lowest quantum state in a harmonic trap. The theory of BEC and supe...

متن کامل

Wess-Zumino-Witten Terms in Graphene Landau Levels.

We consider the interplay between the antiferromagnetic and Kekulé valence bond solid orderings in the zero energy Landau levels of neutral monolayer and bilayer graphene. We establish the presence of Wess-Zumino-Witten terms between these orders: this implies that their quantum fluctuations are described by the deconfined critical theories of quantum spin systems. We present implications for e...

متن کامل

Spontaneous interlayer superfluidity in bilayer systems of cold polar molecules

Recent experimental progress in producing ultracold polar molecules with a net electric dipole moment opens up possibilities for realizing quantum phases governed by the long-range and anisotropic dipole-dipole interactions. In this work we predict the existence of experimentally observable broken-symmetry states with spontaneous interlayer coherence in cold polar molecule bilayers. These exoti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013